
SASE x DSI Presents:

Sign in here!

THE BASICS OF 

Technical Workshop #2!



Introduction

Convolutional Neural Networks

Live Demo!

Making Predictions

Table of contents

01

02

03

04



The 
Introduction



What is Deep Learning?
● Deep learning is a branch of AI that teaches computers 

how to process data in a similar fashion to the human 

brain.

● A neural network is used to achieve this

○ “Nodes” are circles in the neural network, which 

represent a neuron

○ “Deep” meaning the network has many “layers”

● Layers basically transform the input (image, text, etc.) 

over and over again until the computer understands 

what it is. (i.e an image is a cat)



Applications of Deep Learning
● Image Classification/Recognition

● Image Segmentation/Object Detection

● Natural Language Processing

● Fraud Detection, Vocal AI, 

Recommendations, and much more!



So… why should you care?

● Deep learning has countless applications 

across many industries

● Disruptive technology; has the potential to 

revolutionize how businesses operate

● “68.5% of college graduates believe AI could 

take their job or make it irrelevant”



How to Train Your Model
● In regular programming, you write code to program your app. In Machine Learning, you 

are essentially “coding” your model with the data you give it

○ This is very important to note, because for example, if you trained a face detection 

model, but only used Asian people in your data, this model would not work well with 

non-Asian people

○ This is called bias in training data, and very important when making a model and 

something people should consider before training.

○ Overfitting - another common problem in deep learning, models with many 

parameters (millions, billions!) can learn “too well” which means they can’t generalize



How to Train Your Model
● Once you have collected your data, 

someone has to manually label each one, 

and that could be putting it in a folder 

named “Cat”, or manually naming it 

Cat12.jpg

● Kaggle is an open source site that has 

data pre labeled for everyone to use!

● Once you are sure your data is ready, you 

can start training your model



Different kinds of Neural Networks

Recurrent
Saves a layer’s output 

and feeds it back to the 
input to improve 

predictions; 
“remembers info”

Sequence to 
Sequence

Two recurrent neural 
networks consisting of 

an encoder and 
decoder

Modular
Model has different 

networks that function 
independently and 
perform sub-tasks



Convolutional 
Neural Network



What is a Convolutional Neural Network (CNN)?

● A neural network that has a window that 

essentially “slides” over images to extract 

features from them.

● Key layers in a CNN: Conv2D, Flatten, 

Linear/FC

○ Conv2D: scans the image w/ filter

○ Flatten: converts the 2D image into 

linear data

○ Linear/FC: last step to classify data

http://www.youtube.com/watch?v=JboZfxUjLSk&t=123


Live 
Demo! 

Let’s learn how to differentiate between cats and dogs!



Follow along with us!

Inference Co-LabTraining Co-Lab



Device?
● Device - hardware where the computer will be doing the calculations for the model during 

training/inference

○ Is performed on the CPU by default

○ ‘CUDA’ is the GPU; performs much faster since the GPU enables multiple processes to be 

done at once, speeding up training significantly

● On Google Colab, you can enable GPU by doing Runtime > Change Runtime Type



Transforming Data
● Transformations modify the input data (e.g. resizing it, normalization, performing random crops, 

blurring it, cutting parts out, etc.)

○ Not everyone is Meta or Google and can collect mountains of user data

○ Data augmentation means training better models by creating additional data from what 

we already have, which means the model is less likely to overfit and will perform better

○ ToTensor() - turns an image into a tensor, which is the basic data structure for deep 

learning (it’s like an array with more than 2 dimensions)



DataLoaders
● DataLoader - PyTorch class used for loading data from a dataset during training/testing, during 

training the dataloader will shuffle the data and apply transformations, so during one epoch the 

same image might be flipped horizontally but might not be in another one

○ Models will process every image in a batch before updating itself to “learn”, so batch size 

specifies how many images are in one batch (larger batch size requires larger 

computational resources, but will train faster)



Neural Network Structure
● Coding a neural network means defining its constructor (__init__) and the forward() function.

○ __init__ will define the layers of the neural network

■ Conv2d - 2-D convolutional layer that scans over the image using the given parameters to 

find important features

■ BatchNorm2d - normalizes the data to improve model performance/reduce overfitting

■ ReLU - stands for rectified linear unit, pretty much just allows the model to learn 

non-linear data

■ MaxPool2d - extracts the largest value from a patch to create a smaller tensor

○ forward() passes the input through each layer of the network and returns the output as logits 

(probabilities that the image is of a certain class)



Optimizers and Loss Functions

● Optimizers find the values that minimize a loss function as much as possible.

○ This allows for the model to be updated and thus improve its performance during training

● Loss functions calculate how far off the model is from the actual truth, lower is better



Training Loop
● Five Steps During Training:

1. Forward Pass/outputs = model(images) - passing the batch of images through the layers 

of the model and generating predictions

2. Calculate Loss/loss = loss_function(outputs, labels) - loss function will compare the 

model’s outputs to the ground truth and determine how wrong the model is

3. Zero Gradients/optimizer.zero_grad() - sets the optimizer’s values to zero so they can be 

recalculated for the specific training step

4. Backpropagation/loss.backward() - estimates how much the loss will change after each 

parameter of the model is updated

5. Update the optimizer/optimizer.step()- updates the parameters of the model so they can 

be better for next batch



Validation
● Validation - monitoring the progress of the model with additional data that the model hasn’t 

been trained on

○ Allows us to see whether the model is overfitting, learning successfully, or not learning yet

○ If the model performs really well on training but is garbage during validation, the model is 

probably overfitting



Making 
Predictions



Neural Network Structure Pt 2
To use our model we saved, we will need to define the training path + prediction path. Then, the 

code for the CNN constructor needs to be copied over as well as the transformer.

Variables that need to be Defined:

● Training Path: To get the classes

● Prediction Path: Path to where the pictures are to predict them

Code to Copy over:

● Transformer: Used to transform new images to feed into our CNN

● CNN Structure: Used to define the structure that we will load the model to.



Loading the Model

Then, we initialize our model with 2 classes and load the checkpoint into it. 

model.eval() is used to ensure that the structure of our CNN is still the same

Previously in our training loop, we 

saved the model as we went with the 

best accuracy. We need to load it 

again with the torch.load(‘...’) function



● Uses the transformer to get our image 

to the same specification as our model

● We pass the image as input into the 

model and get an output and return it.

Prediction 
Function



Using the model

[29] Gets the paths to all the images we have in a list called images_path

[30] For every image path, pass that image into the prediction function, and store 

the result in the predictions dictionary

[31] View the content of ‘pred_dict’



Resources
If you want to learn more or follow along, here’s some resources to look at!

Source Code:
● Training: https://colab.research.google.com/drive/1c_Xm6DHD8wRL73NAXDNrQS3mWhG2NxI-?usp=sharing

● Inference: https://colab.research.google.com/drive/1T3r2vT7ayN_aUvBYYgpUgEUlKGaJuMAk?usp=sharing

More Resources:
● Deep Learning Basics by Lex Fridman

● Deep Learning: State of the Art by Lex Fridman

● Zero to Mastery (in-depth PyTorch tutorials)

https://www.freepik.com/free-photo/top-view-circuit-board-close-up_20282396.htm/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=sg_resources&utm_content=freepik
https://colab.research.google.com/drive/1c_Xm6DHD8wRL73NAXDNrQS3mWhG2NxI-?usp=sharing
https://colab.research.google.com/drive/1T3r2vT7ayN_aUvBYYgpUgEUlKGaJuMAk?usp=sharing
https://www.youtube.com/watch?v=O5xeyoRL95U
https://www.youtube.com/watch?v=0VH1Lim8gL8
https://www.learnpytorch.io/


CREDITS: This presentation template was created by Slidesgo, and 
includes icons by Flaticon, and infographics & images by Freepik

For any questions, please contact 

Sharika, Tam or Matthew on Discord!

Thanks!

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

